中小学教学论坛
Would you like to react to this message? Create an account in a few clicks or log in to continue.

初高中数学教学衔接浅议 【高中数学论文】

向下

初高中数学教学衔接浅议 【高中数学论文】 Empty 初高中数学教学衔接浅议 【高中数学论文】

帖子  Admin 周四 10 十二月 2009 - 15:45

初高中数学教学衔接浅议

潘静


“数学难学”是高中学生普遍反映的问题。一 些在初中数学成绩较好的学生,甚至在中考中数学取得优秀成绩的学生,经过高中一 段时间的学习后,数学成绩却呈下降趋势。这也是数学教师十分关心的问题。不少高中数学教师强烈呼吁中考命题要体现高中阶段数学教学对初中学生数学能力的要求,希望以此对初中数学教学施加影响。其实,初高中数学相比,在教材内容、教学要求、教学方式、思维层次,以及学习方法上都发生了突变,如何衔接初高中数学教学,提高高中数学教学质量是一 个十分重要的问题。本人担任了两届高中数学循环教学都取得较好的成绩,前两年又带了两届初三毕业班,对初中数学教学有一 定的了解,同时证实了本人在处理初高中数学教学衔接问题上的做法是切实可行的。下面,本人拟从以下几个方面略述一 些浅见。
一 、激发学生的学习兴趣,充分调动学生的主动性和积极性

兴趣是进行有效活动的必要条件,是成功的源泉。所以,要使学生学好数学,首先要进一 步激发他们对数学的兴趣,调动他们学习的主动性,使学生认识并体会到学习数学的意义,感觉到学习数学的乐趣。帮助学生树立信心,培养学生良好的学习习惯。鼓励学生质疑和提问,向老师“刨根问底”,甚至提出“标新立异”、“异想天开”的见解,对于他们在思维过程中出现的任何小小的“闪光点”都要给予充分的肯定。

其次,教学要重视创设数学情境,便于学生产生感性认识。讲授新内容时,教师应注意创设问题的情境,尽量做到问题的提出、内容的引入和拓宽生动自然,并能自然地引导学生去思考、尝试和探索,在数学问题的不断解决中,让学生随时享受到由于自己的艰苦努力而得到成功的喜悦,从而促使学生的学习兴趣持久化,并能达到对知识的理解和记忆的效果。特别是在讲授一 些著名的、重要的定理时,要创设情境,尽量做到再现数学家的发现过程,在同等情境下让我们的学生去探索,并经过引导达到真正认识、理解。

另外,教学要注意心境的创设,以提供良好的心理条件。在高中数学中要严格控制讲授的深度和进度,使大多数学生能消化接受,精心设计不同层次的提问素材,让每位学生在一 周内都能有1—2次机会在课堂上回答教师的问题,精心编制试题,保证百分之九十以上的人能及格,百分之三十高分。作业批改要认真、细致、耐心,慎重打“×”,使不同层次的学生都能有一 种成功感,拓宽心理情境,使学生热爱数学。
二、衔接好教材内容

初高中教材内容相比,高中数学的内容更多、更深、更广、更抽象,尤其在高一 上学期的代数第一 章中抽象概念及性质多,知识密集,理论性强,且立体几何入门难,学生不易建立空间概念,空间想象能力差,同时,高中数学更多地注意论证的严密性和叙述的完整性,整体的系统性和综合性。因此在高中教学中,要求教师利用好初中知识,由浅入深过渡到高中内容。

1、利用旧知识,衔接新内容。高中教师要熟悉初中数学教材和课程标准对初中的数学概念和知识的要求做到心中有数,高中数学新授课就可以从复习初中内容的基础上引入新内容。高一 数学的每一 节内容都是在初中基础发展而来的,故在引入新知识、新概念时,注意旧知识的复习,用学生已熟悉的知识进行铺垫和引入。如在讲任意角的三角函数时,要先复习初三学过的锐角三角函数的概念,进而提出任意角的三角函数概念而引入坐标定义法。
2、利用旧知识,挖掘加深新知识。
如平面几何中,两条直线不平行就相交,到立体几何中就不一 定是相交,也有可能异面。其实,有不少结论在平面几何中成立的,但到了立体几何中就不一 定成立了。如果能一 步一 步挖掘、深入,不仅可使学生巩固初中知识,更重要的是学生能逐步得以接受、理解新知识。
三、衔接好教学方法
初中学生思维主要停留在形象思维或者是较低级的经验型抽象思维阶段;而高一 第一 学期到高二第一 学期属于理论型抽象思维,是思维活动的成熟时期,并开始向辩论思维过渡。因此在高中数学中要求学生通过观察、类比、归纳、分析、综合来建立严密的数学概念,掌握数学知识。所以在教学方法上必须要有较好的衔接。

1、应根据学生思维发展阶段的特点组织教学,促进思维过渡。例如,在初一 代数教学中,要着重发展学生的抽象概括能力;在初二数学教学中应加强推理的训练,发展形式思维的能力;在初三应通过数形结合和解题思路的探索活动,来发展学生思维的预见性、反省性和独创性,以达到为理论型抽象思维的发展做准备、打基础的目的。至于高中数学教学,则要进一 步注意理论观点对数学思维活动的指导作用,注意从具体的实践活动中,发展并丰富数学观念系统,在高二解析几何教学中,则应把发展学生的辨证思维能力当作重要的教学目的。所以在衔接阶段,要使学生的思维训练和思维发展阶段相适应。过难、过急是不行的,过易、过慢也是不行的,要设计好教学程序,使教学既要符合学生思维结构所具有的水平,又要有一 定强度和适当难度。

2、注意加强化归思想方法的训练,培养学生的联想转化能力。把一 个复杂陌生的问题转化为简单熟知的问题加以解决,这是一 种重要的数学思想方法,这种方法在数学中应用十分广泛。我们知道,立体几何研究的虽是空间图形,但它的大多数问题都可以归结为平面几何问题来解决。

比如空中平行的转化策略:证明线线平行 线面平行 面面平行;空间中垂直的转化策略:证明线线垂直线面垂直 线线垂直。另外,空间中的角、距离及几何体都分别有一 些转化策略。

3、重视知识归纳,培养逻辑思维能力。合理的知识结构,有助于思维由单维向多维发展,形成网络。在教学中不仅要指导学生掌握好各章节基础知识,还要让学生学会归纳、整理,真正做到“由薄到厚”又“由厚到薄”。在复习中要找到知识间的内在联系,形成清晰的知识结构图表,以便理清概念,使其系统化,便于记忆及掌握运用。同时对所学的思维方法和解题方法也应进行分类总结,找出其共性与个性,区别与联系,形成学生的解题思考方法。
四、衔接好学习方法

初中学习的知识,大多是本源性知识、派生性知识,因此初中学习基本采用“感性认识——理性认识——实践”的方法;而高中学习基本采用“已知理性认识——新的理性认识——实践”的方法。

1、重视学生良好习惯培养。好的学习习惯有勤学好问习惯、上课专心听讲习惯、作笔记的习惯、及时复习的习惯、独立完成作业书写规范工整的习惯等。只有有了良好的学习习惯,才能在教师的有效引导下度过这个衔接阶段。

2、教给基本方法。怎样观察与思考、怎样理解与分析、怎样综合与应用,是高中教学的难点所在,掌握学习方法是攻破这个难点的措施之一 。如问题讨论法、自学指导法、类比推理法、假设法、实验辅助法、预习——听课——复习(练习)——总结归纳的学习方法,将学与问、学与练、学与思、学与用有机结合起来。

3、培养自学能力。授人以“渔”,因材施“导”,努力教会学生自学,培养自学能力,是教之根本,而自学能力的提高,首先有赖于阅读理解能力的培养。高一 学生阅读时,读不顺,读不细,读不实,读不准,所以老师千万别急,在这个衔接阶段,可以编出问题,引导阅读,如概念叙述与理解,定理、命题的方法与思路。让学生边阅读边回答,对概念要求会联系、会举例;定理要求会分析、会应用;解题要求尽量一 题多解。一 章结束会用图表归纳结论和要点,弄清重点概念和定理、公式,明白要掌握哪些基础知识技能。

Admin
Admin

帖子数 : 376
注册日期 : 09-11-25

http://jinsz.cool5site.net

返回页首 向下

返回页首


 
您在这个论坛的权限:
不能在这个论坛回复主题